This article highlights the use of key blocks for securing cryptographic keys under the latest versions of PCI PTS and PCI PIN Security.
Since the exponential increase of digital assets in banking transactions, the requirement of cryptographic mechanisms for the protection of assets has also increased respectively. The evolving complexity of cyber-attacks and existing vulnerabilities in communication systems has made protecting cryptographic keys a huge challenge.
The top cryptographic security control for protecting business transactions is the hardware security module (HSM). Banks and enterprises use HSMs to protect their and their clients’ transactions.
The loss or compromise of crypto keys would lead to reputational loss, penal regulatory penalties, and loss of trust of clients and investors on the business.
The release of the latest version 3.0 of PCI PTS HSM and version 3.0 of PCI PIN Security Requirements and Testing Procedures strongly mandates the use of key blocks.
This article highlights the importance of key blocks for the security of cryptographic keys.
The reason for fortifying cryptographic keys is to provide security and reliability that targets two basic requirements:
ASC X9 TR 31-2018 – Interoperable Secure Key Exchange Key Block Specification addresses the requirements for key blocks and standards for key blocks.
As mandated by PCI SSC & PCI DSS, the standard mechanism for protecting the integrity and usage/association of cryptographic keys is the implementation of key blocks. The payment data is protected by cryptographic keys, which are in turn protected by key blocks. Without the proper implementation of key blocks, banking solutions would be more vulnerable to attacks or breaches, resulting in potential payment data compromises.
Symmetric cryptographic algorithms use a single key for its mode of operation. However, there is a scenario of TDES (Triple DES) or TDEA where three keys are used. With TDES and TDEA, not only does the protection of keys matter but also their order because the order of the keys is critical to the strength of the resulting TDEA encryption. The order of the crypto keys cannot be assured without using key blocks.
Encryption keys must be used only for the purpose for which they were intended. For example, a PEK (PIN Encrypting Key) cannot be used as a KEK (Key Encrypting Key) and vice versa. Similarly, the keys for decryption and generation of digital signatures must be different. This segregation is necessary to limit the exposure of keys to maintain the strength of the overall system.
Key usage must be cryptographically bound to the key using accepted methods. Acceptable methods of implementing the integrity requirements include, but are not limited to:
The PCI PIN Security – Requirement 18-3 Key Blocks mandates that encrypted symmetric keys should be managed in key block structures. Key blocks must be used for all types of PIN security-relevant symmetric keys, including:
PCI SSC has rolled out a phase-wise implementation of three phases with each having its own effective date. The main aim to divide into three phases is to allow organizations to focus resources to address implementation tasks specific to their environment and support a smooth migration across the payments network.
The phase-wise implementation plan is as follows:
Version | Release Date | Description |
1.0 | June 2019 | Implement key blocks for internal connections and key storage within service provider environments. This would include all applications and databases connected to HSMs. |
2.0 | June 2021 | Implement key blocks for external connections to associations and networks. |
3.0 | June 2023 | Implement key blocks to extend to all merchant hosts, point-of-sale (POS) devices, and ATMs. |
A key block provides confidentiality (secret data/keys cannot be disclosed) and integrity (associated data cannot be modified without detection) of the key(s). The integrity of a key block is protected as well.
A key block contains the attributes that allow vendors and implementers to design policies for specific key types, e.g. if the HSM knows that a given key is a PIN key, it will not allow its use for non-PIN data.
Similarly, if the HSM knows that a key is a key-encrypting key, it will not allow it to encrypt data. Vendors enforce these policies based on attributes to prevent attacks against the keys. The attacks on cryptographic keys were successful only in the scenarios where these attributes and policies were not effectively enforced.
HSMs are widely deployed in corporations for effective management and security of crypto keys.
PCI PTS HSM version 1.0 was released in April 2009 and various HSMs and cryptographic modules were validated against this standard. A general public notice was issued by PCI SSC stating that the approval of devices validated using PCI PTS HSM version 1.0 expired on 30 April 2019.
The latest versions of PCI PTS HSM and PIN Security Requirements strongly mandate the compliance of key blocks. Validations carried out older HSMs do not comply with the latest HSM security requirements and standards. They may not be able to withstand the latest generations of attacks and should, therefore, be replaced with key block-oriented, architecture-based hardware.
We will keep you posted with news from Utimaco and the industries we protect, as well as information on upcoming events and webinars.
Subscribe now